A carregar...
Discrete Radon transform has an exact, fast inverse and generalizes to operations other than sums along lines
Götz, Druckmüller, and, independently, Brady have defined a discrete Radon transform (DRT) that sums an image's pixel values along a set of aptly chosen discrete lines, complete in slope and intercept. The transform is fast, O(N(2)log N) for an N × N image; it uses only addition, not multiplica...
Na minha lista:
| Autor principal: | |
|---|---|
| Formato: | Artigo |
| Idioma: | Inglês |
| Publicado em: |
National Academy of Sciences
2006
|
| Assuntos: | |
| Acesso em linha: | https://ncbi.nlm.nih.gov/pmc/articles/PMC1697830/ https://ncbi.nlm.nih.gov/pubmed/17159155 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1073/pnas.0609228103 |
| Tags: |
Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
|