A carregar...

Feature Selection for Multi-label Learning: A Systematic Literature Review and Some Experimental Evaluations

Feature selection can remove non-important features from the data and promote better classifiers. This task, when applied to multi-label data where each instance is associated with a set of labels, supports emerging applications. Although multi-label data usually exhibit label relations, label depen...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Main Authors: Newton Spolaôr, Huei Diana Lee, Weber Shoity Resende Takaki, Feng Chung Wu
Formato: Artigo
Idioma:Inglês
Publicado em: Springer 2015-12-01
Colecção:International Journal of Computational Intelligence Systems
Assuntos:
Acesso em linha:https://www.atlantis-press.com/article/25868669.pdf
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!