Cargando...
Graph Regularized Nonnegative Matrix Factorization with Sparse Coding
In this paper, we propose a sparseness constraint NMF method, named graph regularized matrix factorization with sparse coding (GRNMF_SC). By combining manifold learning and sparse coding techniques together, GRNMF_SC can efficiently extract the basic vectors from the data space, which preserves the...
Guardado en:
Autores principales: | , |
---|---|
Formato: | Artigo |
Lenguaje: | Inglês |
Publicado: |
Hindawi Limited
2015-01-01
|
Colección: | Mathematical Problems in Engineering |
Acceso en línea: | http://dx.doi.org/10.1155/2015/239589 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|