ロード中...
Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks
Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this...
保存先:
主要な著者: | , , , , , |
---|---|
フォーマット: | Artigo |
言語: | Inglês |
出版事項: |
MDPI AG
2019-05-01
|
シリーズ: | ISPRS International Journal of Geo-Information |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2220-9964/8/6/243 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|