ロード中...

Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks

Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this...

詳細記述

保存先:
書誌詳細
主要な著者: Yong Han, Shukang Wang, Yibin Ren, Cheng Wang, Peng Gao, Ge Chen
フォーマット: Artigo
言語:Inglês
出版事項: MDPI AG 2019-05-01
シリーズ:ISPRS International Journal of Geo-Information
主題:
オンライン・アクセス:https://www.mdpi.com/2220-9964/8/6/243
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!