Carregant...

Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks

Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autors principals: Yong Han, Shukang Wang, Yibin Ren, Cheng Wang, Peng Gao, Ge Chen
Format: Artigo
Idioma:Inglês
Publicat: MDPI AG 2019-05-01
Col·lecció:ISPRS International Journal of Geo-Information
Matèries:
Accés en línia:https://www.mdpi.com/2220-9964/8/6/243
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!