A carregar...

Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data

Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining (DADM) and fairness, accounta...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Main Authors: Michael Veale, Reuben Binns
Formato: Artigo
Idioma:Inglês
Publicado em: SAGE Publishing 2017-11-01
Colecção:Big Data & Society
Acesso em linha:https://doi.org/10.1177/2053951717743530
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!