ロード中...
New result on the mean-square exponential input-to-state stability of stochastic delayed recurrent neural networks
In this paper, we solve the mean-square exponential input-to-state stability problem for a class of stochastic delayed recurrent neural networks with time-varying coefficients. With the aid of stochastic analysis theory and a Lyapunov-Krasovskii functional, we derive a novel criterion that ensures t...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | Artigo |
言語: | Inglês |
出版事項: |
Taylor & Francis Group
2018-01-01
|
シリーズ: | Systems Science & Control Engineering |
主題: | |
オンライン・アクセス: | http://dx.doi.org/10.1080/21642583.2018.1544512 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|