טוען...
Identifying reliable independent components via split-half comparisons
Independent component analysis (ICA) is a family of unsupervised learning algorithms that have proven useful for the analysis of the electroencephalogram (EEG) and magnetoencephalogram (MEG). ICA decomposes an EEG/MEG data set into a basis of maximally temporally independent components (ICs) that ar...
שמור ב:
Main Authors: | , , |
---|---|
פורמט: | Artigo |
שפה: | Inglês |
יצא לאור: |
2008
|
נושאים: | |
גישה מקוונת: | https://ncbi.nlm.nih.gov/pmc/articles/PMC3062525/ https://ncbi.nlm.nih.gov/pubmed/19162199 https://ncbi.nlm.nih.govhttp://dx.doi.org/10.1016/j.neuroimage.2008.12.038 |
תגים: |
הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|