ロード中...

Graph Regularized Nonnegative Matrix Factorization with Sparse Coding

In this paper, we propose a sparseness constraint NMF method, named graph regularized matrix factorization with sparse coding (GRNMF_SC). By combining manifold learning and sparse coding techniques together, GRNMF_SC can efficiently extract the basic vectors from the data space, which preserves the...

詳細記述

保存先:
書誌詳細
主要な著者: Chuang Lin, Meng Pang
フォーマット: Artigo
言語:Inglês
出版事項: Hindawi Limited 2015-01-01
シリーズ:Mathematical Problems in Engineering
オンライン・アクセス:http://dx.doi.org/10.1155/2015/239589
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!