ロード中...
Graph Regularized Nonnegative Matrix Factorization with Sparse Coding
In this paper, we propose a sparseness constraint NMF method, named graph regularized matrix factorization with sparse coding (GRNMF_SC). By combining manifold learning and sparse coding techniques together, GRNMF_SC can efficiently extract the basic vectors from the data space, which preserves the...
保存先:
主要な著者: | , |
---|---|
フォーマット: | Artigo |
言語: | Inglês |
出版事項: |
Hindawi Limited
2015-01-01
|
シリーズ: | Mathematical Problems in Engineering |
オンライン・アクセス: | http://dx.doi.org/10.1155/2015/239589 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|