Загрузка...

Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks

Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this...

Полное описание

Сохранить в:
Библиографические подробности
Главные авторы: Yong Han, Shukang Wang, Yibin Ren, Cheng Wang, Peng Gao, Ge Chen
Формат: Artigo
Язык:Inglês
Опубликовано: MDPI AG 2019-05-01
Серии:ISPRS International Journal of Geo-Information
Предметы:
Online-ссылка:https://www.mdpi.com/2220-9964/8/6/243
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!