Carregando...

Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks

Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Principais autores: Yong Han, Shukang Wang, Yibin Ren, Cheng Wang, Peng Gao, Ge Chen
Formato: Artigo
Idioma:Inglês
Publicado em: MDPI AG 2019-05-01
coleção:ISPRS International Journal of Geo-Information
Assuntos:
Acesso em linha:https://www.mdpi.com/2220-9964/8/6/243
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!