Wird geladen...

Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks

Predicting the passenger flow of metro networks is of great importance for traffic management and public safety. However, such predictions are very challenging, as passenger flow is affected by complex spatial dependencies (nearby and distant) and temporal dependencies (recent and periodic). In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yong Han, Shukang Wang, Yibin Ren, Cheng Wang, Peng Gao, Ge Chen
Format: Artigo
Sprache:Inglês
Veröffentlicht: MDPI AG 2019-05-01
Schriftenreihe:ISPRS International Journal of Geo-Information
Schlagworte:
Online Zugang:https://www.mdpi.com/2220-9964/8/6/243
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!