Laddar...

Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models

Drift is an important issue that impairs the reliability of sensors, especially in gas sensors. The conventional method usually adopts the reference gas to compensate for the drift. However, its classification accuracy is not high. We propose a supervised learning algorithm that is based on multi-cl...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsmän: Xia Zhao, Pengfei Li, Kaitai Xiao, Xiangning Meng, Lu Han, Chongchong Yu
Materialtyp: Artigo
Språk:Inglês
Publicerad: MDPI AG 2019-09-01
Serie:Sensors
Ämnen:
SVM
Länkar:https://www.mdpi.com/1424-8220/19/18/3844
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!