Cargando...

Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models

Drift is an important issue that impairs the reliability of sensors, especially in gas sensors. The conventional method usually adopts the reference gas to compensate for the drift. However, its classification accuracy is not high. We propose a supervised learning algorithm that is based on multi-cl...

Descrición completa

Gardado en:
Detalles Bibliográficos
Main Authors: Xia Zhao, Pengfei Li, Kaitai Xiao, Xiangning Meng, Lu Han, Chongchong Yu
Formato: Artigo
Idioma:Inglês
Publicado: MDPI AG 2019-09-01
Series:Sensors
Assuntos:
SVM
Acceso en liña:https://www.mdpi.com/1424-8220/19/18/3844
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!