Cargando...

Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models

Drift is an important issue that impairs the reliability of sensors, especially in gas sensors. The conventional method usually adopts the reference gas to compensate for the drift. However, its classification accuracy is not high. We propose a supervised learning algorithm that is based on multi-cl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xia Zhao, Pengfei Li, Kaitai Xiao, Xiangning Meng, Lu Han, Chongchong Yu
Formato: Artigo
Lenguaje:Inglês
Publicado: MDPI AG 2019-09-01
Colección:Sensors
Materias:
SVM
Acceso en línea:https://www.mdpi.com/1424-8220/19/18/3844
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!